Mathematics Evolution of

Data
 Representation In Computers

Let's start with denary first. With denary we have place values such as: 1,000, 100, 10, 1 and by using the symbols 0-9 we can represent any number value. For example, the number 4,321 is represented by:

Place Values	Symbols (0-9)
1000	4
100	3
10	2
1	1

When we calculate this we do
$1,000 \times 4=4000$
$100 \times 3=300$
$10 \times 2=20$
$1 \times 1=1$
When we add those all up we get
$4,000+300+20+1=4,321$
Now let's move to binary. In binary, the information is stored in bytes. Bytes are made up of 8 place values and the symbols 0 and 1 . So for example, 10101011 would be represented by:

Place Values	128	64	32	16	8	4	2	1
Symbol (1 or 0)	1	0	1	0	1	0	1	1

We can now calculate this back into Denary (Base-10). $(128 \times 1)+(64 \times 0)+(32 \times 1)+(16 \times 0)+(8 \times 1)+(4 \times 0)+(2 \times 1)+(1 \times 1)=171$ or more simply $128+32+8+2+1=171$

Use a pencil so you can reuse this template for pages 5-7 on Activity 1.

Datta

Representation
ne computers

Extras

Find Out More

- Representing and manipulating data in computers https://atadastral.co.uk/go/bswmf1
- Using numbers and handling data
https://atadastral.co.uk/go/bswmf2
- Mathematics for science and technology
https://atadastral.co.uk/go/bswmf3

Have a Go

- Primary Activities \& Games
https://atadastral.co.uk/go/bswmh1
- Secondary Problems \& Challenges
https://atadastral.co.uk/go/bswmh2
- Post-16 - Thinking Mathematically
https://atadastral.co.uk/go/bswmh3
- Representation of Numbers
https://atadastral.co.uk/go/bswmh4
- Representation of Text
https://atadastral.co.uk/go/bswmh5
- Representation of Images
https://atadastral.co.uk/go/bswmh6
Can You Rescue The Diamond?
https://atadastral.co.uk/go/bswmh7

Teacher Links

- NRICH aims to enrich the mathematical experiences of all:
Primary Curriculum
https://atadastral.co.uk/go/bswmt1
Secondary Curriculum
https://atadastral.co.uk/go/bswmt2
Post-16 Curriculum
https://atadastral.co.uk/go/bswmt3
- Binary Activities For Primary
https://atadastral.co.uk/go/bswmt4
- Hello World issue 10 - Maths and Computer Science Special
https://atadastral.co.ulk/go/bswmt5

Activity 1 Binary Art

0101010001101 10011011011110 01101111011011 011101101111011

A computer stores everything as 1's and 0's, including images. Use the following activities to see how that is possible.

Look at the grid on the right-hand side, when there is a ' 1 ', colour that square in black. When there is a ' 0 ', leave it blank.

What image can you see? Now try the same for the two grids below:

0	0	0	1	1	0	0	0
0	0	1	1	1	1	0	1
0	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1
0	0	1	1	1	1	0	1
0	0	0	1	1	0	0	0

0	0	0	1	0	0	0	0
0	0	1	1	1	0	0	0
0	0	1	0	1	0	0	0
0	1	1	1	1	1	0	0
1	1	1	1	1	1	1	0
0	0	1	1	1	0	0	0
0	1	1	0	1	1	0	0
1	1	0	0	0	1	1	0

A

00100111	00011001	00100100	00000001	00011111	00010110	00100101
00010111	00011011	00010101	00101010	00011110	00010110	00011001
00011110	00011011	00011000	00011000	00011010	00011101	00011011
00010001	00011011	00011011	00010101	00010101	00011010	00010100
00001110	00000011	00010110	00011100	00011101	00001100	00010001
00001001	00110001	00101111	00011110	00100000	00001111	00100110
00010001	00000111	00010100	00100001	00101101	00011101	00110010

For these next ones, firstly have a go at converting the binary number in each square into a denary number.

Once you have the denary number, use the key on the
right-hand side to colour in the squares in the suggested colour.

What images can you see?

Activity 1 Binary Art

-

colour.

What images can you see?

Denary Range	Colour
$1-10$	Green
$11-20$	Blue
$21-30$	Red

Activity 1 Binary Art

For these next ones, firstly have a go at converting the binary number in each square into a denary number.

Once you have the denary number, use the key on the right-hand side to colour in the squares in the suggested

00011111	00110001	00100001	00000110	00100000	00100011	00101001
00100000	00100110	00010100	00001111	00010010	00101111	00110000
00101111	00001110	00011011	00010011	00010110	00001111	00011111
00001010	00010000	00010010	00001110	00010100	00001011	00000101
00101100	00001100	00101110	00010100	00100111	00010001	00100010
00101000	00001111	00100101	00001100	00100000	00001101	00101011
00100100	00100010	00101100	00101101	00101010	0011111	00110010

colour.

What images can you see?

Activity 1 Binary Art

For these next ones, firstly have a go at converting the binary number in each square into a denary number.

Once you have the denary number, use the key on the right-hand side to colour in the squares in the suggested 8 \square

解

Activity 1 Binary Art
 Activity 1

For this part of the activity, we've provided you with a blank grid. Have a go at making your own pixel art to challenge your partner with.
\qquad

路

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l}
\hline \text { Key: } \\
\hline & & & & & & \\
\hline
\end{array}
$$

Activity 2 Barcodes: Calculating the Check Digit

What is a barcode?
Barcodes are lines (or dots) that can be recognised by machines which help identify what that object is. What items can you see around your room that have barcodes?

The numbers at the bottom of the lines are actually there to show what the lines mean. But what do they mean?

The numbers let machines know who made the item (the manufacturer). But they also give that item a unique number which can't be shared with other products.

The last number is special, and it's called a 'check digit'

In a shop, the computer has a list of all of the items and their associated barcodes.

When you buy something at a shop, the barcode scanner (connected to a computer) will read the barcode, check it's valid and make a note on the system that the item has been sold.

The problem

When transmitting lots of data, errors can occur, causing some data to be incorrectly received.

For example, if the barcode scanner is moved too quickly it can misread the code and cause data to be stored and transmitted incorrectly.

Machines have special ways of checking if the data being transmitted is correct In barcodes, we use the last number, the check digit.

The last digit of a bar code is special, it is used to make sure the other numbers are correct.

Activity 2

Barcodes: Calculating the Check Digit

How does a computer do this?

The steps a computer follows to calculate the last digit of 13-digit barcode are:

1. Multiply all the numbers in even positions by 3
2. Multiply all the numbers in odd positions by 1
3. Add together the results of Steps 1 and 2.
4. If the units digit (the number furthest on the right) of
the result of Step 3 is 0 , that is your check digit. If it isn't
0 then you subtract that number from 10 and the result will be your check digit.

Let's try a worked example:
We want to work out the hidden last number (the check digit) behind the pink box.

Multiply all the numbers in even positions by 3.
Start by putting your numbers into a table.
Then multiply each digit in an even position by 3.

Digit Position	1	2	3	4	5	6	7	8	9	10	11	12	13
Bar code digit	9	7	8	0	0	7	2	4	6	5	2	1	?
Multiplier x		3		3		3		3		3		3	
Answer =		$\begin{gathered} 7 \times 3= \\ 21 \end{gathered}$		$0 \times 3=0$		$\begin{gathered} 7 \times 3= \\ 21 \end{gathered}$		$\begin{gathered} 4 \times 3= \\ 12 \end{gathered}$		$\begin{gathered} 5 \times 3= \\ 15 \end{gathered}$		$1 \times 3=3$	

2 Multiply all the numbers in odd positions by 1.

Digit Position	1	2	3	4	5	6	7	8	9	10	11	12	13
Bar code digit	9	7	8	0	0	7	2	4	6	5	2	1	?
Multiplier x	1	3	1	3	1	3	1	3	1	3	1	3	
Answer $=$	$9 \times 1=9$	$\begin{gathered} 7 \times 3= \\ 21 \end{gathered}$	$8 \times 1=8$	$0 \times 3=0$	$0 \times 1=0$	$\begin{gathered} 7 \times 3= \\ 21 \end{gathered}$	$2 \times 1=2$	$\begin{gathered} 4 \times 3= \\ 12 \end{gathered}$	$6 \times 1=6$	$\underset{15}{5 \times 3}=$	$2 \times 1=2$	$1 \times 3=3$	

Add together the results of Steps 1 and 2.

$9+21+8+0+0+21+2+12+615+2+3=99$

- Divide the result of Step 3 by 10

The units digit of the result of Step 3 is not 0 .
So we take the units digit from the result of Step 3 and subtract from 10
Our units digit is 99
$10-9=1$
1 is our check digit!

Activity 2 Barcodes: Calculating the Check Digit

Have a go!
Can you work out the missing digit?

Try to find some items with barcodes that are 13 digits long from the room you're in
Hide the last digit and see if you can work it out correctly!
Maybe try and set some challenges for your partner?

